TMS SMART: Transcranial Magnetic Stimulation Scalp Mapping of Annoyance Ratings and Twitches

TMS-SMART (Meteyard & Holmes, under review) is a method to select stimulation sites for human TMS studies which allows you to control for the subjective annoyance, pain, and muscle twitches, as well as for visible twitches and reaction time changes associated with single-pulse TMS at 43 different sites on the scalp. This website allows you to browse the data visually, and to retrieve suggested control site locations.

Maps - Interactive maps - Background - Methods - Glossary - Data - References

Please cite us!

Meteyard L, Holmes NP (under review) TMS SMART – scalp mapping of annoyance ratings and twitches caused by transcranial magnetic stimulation. Journal of Neuroscience Methods, 0:0    


Abler B, Walter H, Wunderlich AP, Grothe J, Schönfeldt-Lecuona C, Spitzer M, Herwig U (2005) Side effects of transcranial magnetic stimulation biased task performance in a cognitive neuroscience study. Brain Stimulation, 17(4):193-196      
Anderson B, Mishory A, Nahas ZH, Borckardt JJ, Yamanaka K, Rastogi K, George MS (2006) Tolerability and safety of high daily doses of repetitive transcranial magnetic stimulation in healthy young men. Journal of ECT, 22(1):49-53    
Arana AB, Borckardt JJ, Ricci R, Anderson B, Li X, Linder KJ, Long JM, Sackeim HA, George MS (2008) Focal electrical stimulation as a sham control for repetitive transcranial magnetic stimulation: does it truly mimic the cutaneous sensation and pain of active prefrontal repetitive transcranial magnetic stimulation? Brain Stimulation, 1(1):44-51      
Baayen RH, Milin P (2010) Analyzing reaction times. International Journal of Psychological Research, 3(2):12-28  
Bates D, Maechler M, Bolker B, Walker S (2014) Lme4: linear mixed-effects models using eigen and s4. R package version 1, :1-6  
Benninger DH, Berman BD, Houdayer E, Pal N, Luckenbaugh DA, Schneider L, Miranda S, Hallett M (2011) Intermittent theta-burst transcranial magnetic stimulation for treatment of parkinson disease. Neurology, 76(7):601-609      
Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage, 28(1):22-29      
Bolognini N, Ro T (2010) Transcranial magnetic stimulation: Disrupting neural activity to alter and assess brain function. Journal of Neuroscience, 30(29):9647-9650      
Borckardt JJ, Nahas ZH, Teal J, Lisanby SH, McDonald WM, Avery DH, Durkalski V, Pavlicova M, Long JM, Sackeim HA, George MS (2013) The painfulness of active, but not sham, transcranial magnetic stimulation decreases rapidly over time: results from the double-blind phase of the opt-tms trial. Brain Stimulation, 6(6):925-928      
Brainard DH (1997) The psychophysics toolbox. Spatial Vision, 10(4):433-436      
Cardoso EF, Fregni F, Maia FM, Boggio PS, Myczkowski ML, Coracini K, Vieira AL, Melo LM, Sato JR, Marcolin MA, Rigonatti SP, Cruz AC Jr, Barbosa ER, Amaro E. Jr (2008) Rtms treatment for depression in parkinson's disease increases bold responses in the left prefrontal cortex. International Journal of Neuropsychopharmacology, 11(2):173-183      
Chambers CD, Heinen K (2010) TMS and the functional neuroanatomy of attention. Cortex, 46(1):114-117      
de Graaf TA, Koivisto M, Jacobs C, Sack AT (2014) The chronometry of visual perception: review of occipital tms masking studies. Journal of Psychology, 45:295-304      
Dräger B, Breitenstein C, Helmke U, Kamping S, Knecht S (2004) Specific and nonspecific effects of transcranial magnetic stimulation on picture-word verification. European Journal of Neuroscience, 20(6):1681-1687      
Duecker F, Sack AT (2013) Pre-stimulus sham TMS facilitates target detection. Public Library of Science ONE, 8(3):e57765    
Duecker F, de Graaf TA, Jacobs C, Sack AT (2013) Time- and task-dependent non-neural effects of real and sham tms. Public Library of Science ONE, 8(9):e73813    
Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1):143-149    
Fox PT, Ingham R, George MS, Mayberg HS, Ingham J, Roby J, Martin CD, Jerabek PA (1997) Imaging human intra-cerebral connectivity by PET during TMS. NeuroReport, 8(12):2787-2791    
Herwig U, Satrapi P, Schonfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2):95-99    
Herwig U, Cardenas-Morales L, Connemann BJ, Kammer T, Schönfeldt-Lecuona C (2010) Sham or real—post hoc estimation of stimulation condition in a randomized transcranial magnetic stimulation trial. Neuroscience Letters, 471(1):30-33      
Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10-20 system electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4):376-382    
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical Journal, 50(3):346-363      
Janicak PG, O'Reardon JP, Sampson SM, Husain MM, Lisanby SH, Rado JT, Heart KL, Demitrack MA (2008) Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. Journal of Clinical Psychiatry, 69(2):222-232    
Jung J, Bungert A, Bowtell RW, Jackson SR (2016) Vertex stimulation as a control site for transcranial magnetic stimulation: a concurrent tms/fmri study. Brain Stimulation, 9(1):58-64      
Kalbe E, Schlegel M, Sack AT, Nowak DA, Dafotakis M, Bangard C, Brand M, Shamay-Tsoory SG, Onur OA, Kessler J (2010) Dissociating cognitive from affective theory of mind: a tms study. Cortex, 46(6):769-780      
Kuznetsova A, Brockhoff PB, Bojesen RH (2014) Lmertest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2, :-6  
Lisanby SH, Gutman DA, Luber B, Schroeder CE, Sackeim HA (2001) Sham TMS: Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49(5):460-463      
Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS (2000) Transcranial magnetic stimulation (tms) in controlled treatment studies: are some ''sham'' forms active? Biological Psychiatry, 47(4):325-331      
Maizey L, Allen CPG, Dervinis M, Verbruggen F, Varnava A, Kozlov MK, Adams RC, Stokes MG, Klemen J, Bungert A, Hounsell CA, Chambers CD (2013) Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation. Clinical Neurophysiology, 124(3):536-544      
Marzi CA, Miniussi C, Maravita A, Bertolasi L, Rothwell JC, Sanes JN, Zanette G (1998) Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuomotor information in humans. Experimental Brain Research, 118(3):435-458      
Melzack R, Casey KL (1967) Sensory, motivational, and central control determinants of pain: a new conceptual model. In: Kenshalo DR (eds) The Skin Senses. Charles C Thomas, Springfield, Illinois, pp 423–439  
O'Reardon JP, Solvason HB, Janicak PG, Sampson SM, Isenberg KE, Nahas ZH, McDonald WM, Avery DH, Fitzgerald PB, Loo CK, Demitrack MA, George MS, Sackeim HA (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biological Psychiatry, 62(11):1208-1216      
R Core Team (2012) R: a language and environment for statistical computing (version 2.15.2). R Foundation for Statistical Computing, Vienna, Austria  
Ratcliff R (1993) Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3):      
Rossi S, Pasqualetti P, Zito G, Vecchio F, Cappa SF, Miniussi C, Babiloni C, Rossini PM (2006) Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 23(3):793-800      
Rossi S, Hallett M, Rossini PM, Pascual-Leone A, The Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12):2008-2039      
Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C, Giovannelli F, Passero S (2007) A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clinical Neurophysiology, 118(3):709-716      
Ruff CC, Driver J, Bestmann S (2009) Combining tms and fmri: from 'virtual lesions' to functional-network accounts of cognition. Cortex, 45(9):1043-1049      
Sandrini M, Umiltà CA, Rusconi E (2011) The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience and Biobehavioural Reviews, 35(3):516-536      
Satow T, Mima T, Hara H, Oga T, Ikeda A, Hashimoto N, Shibasaki H (2002) Nausea as a complication of low-frequency repetitive transcranial magnetic stimulation of the posterior fossa. Clinical Neurophysiology, 113(9):1441-1443      
Sawaki L, Okita T, Fujiwara M, Mizuno K (1999) Specific and non-specific effects of transcranial magnetic stimulation on simple and go/no-go reaction time. Experimental Brain Research, 127(4):402-408      
Silvanto J, Cattaneo Z, Battelli L, Pascual-Leone A (2008) Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. Journal of Neurophysiology, 99(5):2725-2730      
Sommer J, Jansen A, Dräger B, Steinsträter O, Breitenstein C, Deppe M, Knecht S (2006) Transcranial magnetic stimulation—a sandwich coil design for a better sham. Clinical Neurophysiology, 117(2):440-446      
Sparing R, Mottaghy FM (2008) Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (tms/tdcs)-from insights into human memory to therapy of its dysfunction. Methods, 44(4):329-337      
Tamè L, Holmes NP (2016) Involvement of human primary somatosensory cortex in vibrotactile detection depends on task demand. NeuroImage, 138:184-196      
Terao Y, Suzuki M, Suzuki M, Sakai KH, Hanajima R, Gemba-Shimizu K, Kanazawa I (1997) Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation. Experimental Brain Research, 115(3):541-545      
Vetter P, Grosbras M, Muckli L (2015) TMS over V5 disrupts motion prediction. Cerebral Cortex, 25(4):1052-1059      
Vonloh M, Chen R, Kluger BM (2013) Safety of transcranial magnetic stimulation in Parkinson's disease: a review of the literature. Parkinsonism and Related Disorders, 19(6):573-585      
Wagner TA, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9:527-565      
Walsh VZ, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1(1):73-79      
Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalography and Clinical Neurophysiology, 108(1):1-16    
Whitney C, Kirk M, O'Sullivan J, Lambon-Ralph MA, Jefferies E (2011) The neural organization of semantic control: tms evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cerebral Cortex, 21(5):1066-1075      
Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer-Verlag , New York, pp 8–213